Advanced topics 4: Flexible systems and intrinsically disordered proteins

Tobin R. Sosnick

Dept. of Biochemistry & Mol. Biology, Chair Institute for Biophysical Dynamics University of Chicago

Graduate Program in

Biophysical Sciences

BioSAXS 5 Nov. 6, 2019 Argonne Nat. Lab

References:

Small-angle Scattering

- 1. Riback, J.A., et al., *Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water.* Science, 2017. **358**(6360): p. 238-241.
- 2. Rambo, R.P. and J.A. Tainer, *Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law.* Biopolymers, 2011. **95**(8): p. 559-71.
- 3. Bernado, P. and D.I. Svergun, *Analysis of intrinsically disordered proteins by smallangle X-ray scattering.* Methods Mol Biol, 2012. **896**: p. 107-22.
- 4. Receveur-Brechot, V. and D. Durand, *How random are intrinsically disordered proteins? A small angle scattering perspective.* Curr Protein Pept Sci, 2012. **13**(1): p. 55-75.

Disordered proteins

- 1. Das, R.K., K.M. Ruff, and R.V. Pappu, *Relating sequence encoded information to form and function of intrinsically disordered proteins.* Curr Opin Struct Biol, 2015. **32**: p. 102-12.
- 2. van der Lee, R., et al., *Classification of intrinsically disordered regions and proteins.* Chem Rev, 2014. **114**(13): p. 6589-631.

Unfolded and disordered proteins

Das, Ruff, & Pappu (2015) Curr Op Str Biol

Relevance:

- Does protein folding typically initiate with a rapid hydrophobic collapse?
- ~1/3 of the proteome is intrinsically disordered: **IDP**(roteins), **IDR**(egions)
- Folding upon binding
- phase separation & disease
- Is water a good or poor solvent for proteins?

Scattering: compact versus unfolded polypeptides

Rescaling to remove size but keep shape information: Dimensionless Kratky Plot

More on scaling and shape

IDP in water and high denaturant concentration

Shapes are different – but how?

Useful examples from globular to unfolded

Normalized Kratky plots. The scattering pattern of globular proteins in a normalized Kratky plot exhibits a bell-shaped profile with a clear maximum value of 1.104 for qR_o= $\sqrt{3}$, regardless of the size of the protein, and are all nearly superimposable in the q range $0 \leq R_0 \leq 3$. Conversely, for a random chain, the curve rises with increasing angle, to nearly reach a plateau between 1.5 and 2 and may further increase at $q>0.2$ -0.3 \AA^{-1} , depending on the persistence length and the internal structure of the protein. Bell-shaped profile of a globular protein (PolX, blue line); curve of a protein consisting of several domains tethered by linkers with rather compact conformations ($p47^{pbox}$, dotted green line) or extended conformations (p67^{phox}, continue red line); curve of a fully disordered protein with very short elements of secondary structure (XPC dotted grey line); and curve of a fully disordered and extended protein with short segments of polyproline repeats (salivary protein IB5, continue purple line).

Receveur-Brechot, V. and D. Durand, *How random are intrinsically disordered proteins? A small angle scattering perspective.* Curr Protein Pept Sci, 2012. **13**(1): p. 55-75.

Examples of mixed systems

Scattering from Random Walks (allowed to cross) and self-avoiding RW (not allowed to cross)

Debye formula for random walk:

$$
I_{Debye}(q) = \frac{2I_o \left(e^{-(qRg)^2} - 1 + (qRg)^2\right)}{(qRg)^4}
$$

Swollen Gaussian coil model

$$
P_{\text{SwollenGausCoil}}(R_{ij}) \propto e^{-\left(3R_{ij}^2 / \left(\frac{R_{ij}}{R_{ij}}\right)\right)}
$$

 R_{ij}^2 = a^2 |*i* − j |^{2υ}

a=segment length

Molecular Form Factors (MFF) describe shape of objects

E.g., ellipsoid, axial ratio

Molecular Form Factors (MFF) describe shape of objects

E.g., ellipsoid, axial ratio

Allometry and scaling laws in Biology

General form for a biological variable for animals Variable \propto (Size)^{v}

Kleiber's Law: Metabolic Rate \propto (Mass)^{3/4}

Spheres Mass \propto R³ or $R \propto M^{1/3}$ $v=1/3$

http://universe-review.ca/I10-83 metabolic.jpg

Polymer Physics: scaling laws and Flory exponent v Good and poor solvents

Polymer Physics: scaling laws and Flory exponent v Good and poor solvents

General scaling behavior of proteins

Figure 3

(a) Scaling of radius of gyration (R_g) with chain length N for folded proteins based on ~2,400 nonredundant structures taken from PDBSELECT25 (50). While the radius of gyration shows reasonable agreement with $v_{app} \approx 0.33$, the end-to-end distance shows a poor correlation (inset). (b) Scaling behavior for chemically denatured proteins based on data from Reference 74. The unfolded state under strongly denaturing conditions is well described by a self-avoiding random chain ($v_{\text{app}} \approx 0.59$).

Holehouse & Pappu (2018) Annual Review Biophysics

Obtaining a MFF for disordered polymers Polymer Physics: scaling laws and Flory exponent v Good and poor solvents

Debye formula for random walk

$$
I_{Debye}(q) = \frac{2I_o \left(e^{-(qRg)^2} - 1 + \left(qRg\right)^2\right)}{\left(qRg\right)^4}
$$

non-physical inter-penetration of chain

Can we generate a general MFF for realistic polymers?

Simulations generate ensembles used to make an MFF

Simulations generate ensembles used to make an MFF

MFF for disorder systems: Obtain R_g and v from a single SAS measurement

Riback et al. Science 2017

How well does our MFF work? PNt, 334 residue, low charge hydrophobic IDP P. Clark (U Notre Dame)

Chemical shifts typical of IDP

Measuring R_g and v for an IDP using the MFF

Riback et al. Science 2017

Scattering from Random Walks (allowed to cross) and self-avoiding RW (not allowed)

Debye formula for random walk:

$$
I_{Debye}(q) = \frac{2I_o \left(e^{-(qRg)^2} - 1 + \left(qRg\right)^2\right)}{\left(qRg\right)^4}
$$

Swollen Gaussian coil model

$$
P_{\text{SwollenGausCoil}}(R_{ij}) \propto e^{-\left(3R_{ij}^2 / \sqrt{\frac{2}{3}R_{ij}^2}\right)}
$$

$$
\left\langle R_{ij}^2 \right\rangle = a^2 \left|i - j\right|^{2\nu}
$$

a=segment length

Website for fitting disordered polymers http://sosnick.uchicago.edu/SAXSonIDPs

Acknowledgements

Collaborators: Notre Dame: Prof. Patricia Clark, Dr. Micayla Bowman

UChicago: Prof. Karl Freed,

Drs. Joshua Riback, John Jumper Adam Zmyslowski

NSF GRP Srinivas Chakravarthy BioCAT Beamline APS: DOE, NIH