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. Flexible systems adopt a continuous range of conformations

Distinct from polydisperse systems that adopt a small number of distinct states
(conformations, oligomers)

. Measured SAXS profile is a combination of all the different
species/conformations in solution

Volume weighted sum of all the individual scattering profiles
K
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. For flexible systems, this is an advantage, as it means a single SAXS
measurement samples the entire conformational ensemble

. SAXS is one of the few methods that can quantitatively characterize
partially disordered or completely disordered macromolecules

Often used in combination with NMR



Characteristics of flexibility in

SAXS

How can you tell if you’re measuring a flexible system?

Use multiple metrics

Characteristics of a flexible
system’s scattering profile:

Smooth I(q), with little or no fine
structure

Plateau or increase in
dimensionless Kratky plot

No plateau in Porod-Debye plot
(completely disordered)

Porod exponent < 4

Characteristics of the P(r)
distribution:

Smooth P(r) with little or no fine
structure

Extended tail on P(r) function
Dmax €an be hard to determine

Rg, I(0) from P(r) usually larger
than from Guinier

. Overestimates of M.W. weight
from volumetric methods (Porod
volume, envelopes)

« Alternatively, low calculated
density from Porod volume and

known M.W.
. Other:
« Guinier range may be narrow,
C|mang"’0-8

Flory exponent close to ~0.6

« Extended reconstructions or rigid
body models



I(q) for flexible systems

« For fully disordered systems, I(q) is characteristically
smooth, as it represent an average of a large number of
conformations, which washes out distinct features
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7 simulated conformers of an IDP, their

scattering profiles, and the average scattering Simulated scattering profiles for a
profile of 5000 conformers as compared to the globular, 50% unfolded, and completely
data. unfolded protein.

Cordeiro et al., 2017. DOI: 10.1007/978-981-10-6038-0_7 Kikhney and Svergun, 2015. DOI:

10.1016/j.febslet.2015.08.027



Porod exponent for flexible
systems

. Porod’s law (also Porod-Debye law) states that at high q, scattering intensity
decays as:
-D
1(q) x q D. 1 00
where D is the Porod exponent and depends on the particle . Folded |
shape/flexibility
. Porod exponents:
. Hard sphere: 4
. Rod: 3
. Thin disc: 2
. Random walk/gaussian chain: 2
. Ifx7tended unfolded protein (self avoiding random walk/swollen gaussian chain):
. Needle (fully extended chain): 1
. Smaller exponents indicate less globular systems, either flexibility or — T
anisotropy -2.0 -1.5 -1.0
2 —1
log(q) (A )
. Porod’s law breaks down at higher q due to On a log-log plot, power laws like
. Shape effects (folded/partly folded systems) Porod's law look linear. You can see

the folded system has a steeper
. Hydration and excluded volume effects (all systems, q = 0.15A71) slope at high q, translating to a

larger Porod exponent.

. Fitting in the mid-q range, such as with ScAtter, can determine Porod Johansen et al, 2011.
exponent DOI: 10.1002/pro.739

log(/)
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Dimensionless Kratky plot

Dimensionless Kratky plot: (qRg)?I(q)/I(0) vs. qRq
. Removes effects of size, concentration to allow direct comparison of shape/conformation

Globular systems have a characteristic peak of 1.104 at ~1.73 (v/3)

Random chains plateau between 1.5-2, may increase further at g > 0.2-0.3 A™!

Fully extended chains increase

beyond 2.0

Partially unfolded Natively unfolded

Globular

sR,

Kikhney and Svergun, 2015.
DOI: 10.1016/j.febslet.2015.08.027
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Porod-Debye plot

. Porod-Debye plot: g*I(q) vs. g

. Look at low-to-mid g region, just after first peak of Kratky plot
. Can help distinguish between globular and flexible systems when Kratky plot is
indeterminant
. Use of g3I(q) vs. g3 (sometimes ‘SIBYLS' plot) can also help
. A plateau in the plot indicates a compact globular domain with minimal
conformational flexibility in the system
. Lack of a plateau can indicate full flexibility, or an extended object
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IDP with and without globular MBP tag shows Kratky plot looks relatively globular for both ATP
differences in unfolded vs. partly folded protein bound and unbound. However, Porod-Debye plot
Kratky and Porod-Debye plots shows lack of plateau with ATP unbound. Together

Rambo and Tainer, 2011. DOI: 10.1002/bip.21638 indicates well folded but flexible domains



P(r) for flexible systems

. For fully disordered systems, P(r) is characteristically smooth, as it
represent an average of a large number of possible conformations, which
washes out distinct features

. Extended tail on P(r) function gives slow approach to D,y

. Dmax Can be hard to determine

Ry, I(0) from P(r) usually larger than from Guinier

2 domains +
rigid linker
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r(A) 2 r.om P(r) functions for a globular domain,
. . a flexible linker, two domains plus a
7 simulated conformers of an IDP, their P(r) P(r) functions for simulated globular, 50% flexible linker. and a mutant wri)th R
functions, and the average P(r) of 5000 unfolded, and natively unfolded proteins. rigid linker. Receveur-Brechot and
conformers. Cordeiro et al., 2017. DOI: Kikhney and Svergun, 2015. DOI: Durand. 2012

10.1007/978-981-10-6038-0_7 10.1016/j.febslet.2015.08.027 DOI: 10.2174/138920312799277901



M.W. and density for flexible
systems

. Flexible systems in solution occupy a larger volume, as measured by
SAXS

. M.W. calculation that depends on volumes will tend to overestimate M.W.
for flexible systems

. Porod volume methods
. M.W. estimated from 3D reconstructions

. If M.W. and oligomeric state of sample are known, can calculate observed
particle density from Porod volume
. Proteins: ~1.36 g/cm3
. Globular proteins via SAXS: ~1.3-1.4 g/cm3
. Flexible proteins via SAXS: ~0.9-1.3 g/cm?3

. M.W. differences for the volumetric methods vs. other methods, or a low
calculated density in solution can indicate flexibility

Rambo and Tainer, 2011. DOI: 10.1002/bip.21638



BioCAT —

i

g=sam Other indicators of flexibility

. Guinier fit may only extend to qmaxRg~0.8 (IDRs/IDPs)

. Flory exponent v
— v
R, = RyN
. Defines relation between molecular size (Ry, end-to-end distance, average intra-residue
spacing) and number of residues
. v=1/D (Porod exponent)
. Can be fit, assuming specific models for the system
. IDPs: ~0.5-0.6
. Globular: 0.33
. When doing reconstructions or rigid body modeling assuming 1 shape, results are
characteristically extended, reconstructions show large volumes for flexible regions
. High NSD not necessarily sign of flexibility, nor do flexible systems necessarily have high NSD
. E.g. Reconstructing a two domain protein with flexible vs. fixed linker, flexible linker position
not clearly visible

R _ A

3 Q Rigid linker

Flexible linker

Bernado, 2010. DOI: 10.1007/s00249-009-0549-3



So is my system flexible?

. Indicators of flexibility can be caused by something else

. Smooth I(q): particular protein shape

. Porod exponent < 4: particle shape, poor fitting

. Plateau or increase in dimensionless Kratky plot: shape of macromolecule (e.g. more
anisotropic), poor background subtraction

. No plateau in Porod-Debye plot: shape of macromolecule

. Smooth P(r): particular protein shape

. Extended tail on P(r), Dax hard to determine: aggregation

. Rg, I(0) from P(r) larger than Guinier: poor determination of D,ay

. Overestimates of M.W.: Wrong oligomer or aggregate in solution, inherent uncertainty in
M.W. methods (usually ~10%)

. Narrow Guinier range: aggregation/repulsion

. Flory exponent: poor fitting, bad choice of model

. Extended reconstructions or r_igrid body models: Poor reconstructions (e.g. with high
ambiguity), actual extended particle shape

. Should always combine several different indicators to make statement about
flexibility
. Determining flexibility from SAXS requires preponderance of evidence

. Eliminate other possibilities, such as using P(r) shape to rule our extended rigid shapes vs.
flexibility in normalized Kratky plot, good Guinier to discount aggregation



Analyzing flexible systems

. Flexible systems do not exist in a single conformation in solution

. Analysis can address what range of conformations are in solution, in
some cases what an average conformation may look like

. Ensemble methods for analysis describe set of possible conformations,
set of actual conformations in solution

. Single conformation methods may describe an average conformation,
should only be used for tightly peaked ensembles

. Bead models incorporate no flexibility, can be useful for determining relative
osition of folded and flexible re%ions (Receveur-Brechot and Durand, 2012.
OI: 10.2174/138920312799277901)

. CORAL, BUNCH (ATSAS) fit flexible linkers to known folded domains/subunits
usually result in a model that is close to size of the average conformation in the
ensemble (Bernado, 2010. DOI: 10.1007/s00249-009-0549-3)

. Cannot describe the full range of conformations, so proceed with caution or not
at alll



Ensemble analysis

. Flexible systems sample a large number of conformations, so ensembles of conformations are the most
appropriate way to represent the state in solution

. Ensemble analysis methods use the following approach:
1. Computational generation of a large ensemble describing the conformational landscape available to the protein
2. Computation of theoretical SAXS profiles from the individual conformations
3. Selection of a sub-ensemble of conformations that collective describes the experimental profile

(Cordeiro et al., 2017. DOI: 10.1007/978-981-10-6038-0_7)

. Several different programs exist for ensemble analysis:
. ASTEROIDS
. Basis-Set Supported SAXS (BSS-SAXS)
. Bayesian Ensemble SAXS (BE-SAXS)
. Broad Ensemble Generator with Re-weighting (BEGR)
. Ensemble Optimization Method (EOM, ATSAS)
. Ensemble Refinement of SAXS (EROS)
. ENSEMBLE
. Minimal Ensemble Search (BilboMD-MES)
. Maximum Occurrence (MAX-Occ)
. MultiFoXS
. SASSIE
. Probably more . . .
. Programs differ in how main ensemble pool is generated, how profiles are calculated, how sub-ensemble is

selected



EOM

. Ensemble Optimization Method (EOM) from the ATSAS package was the
original approach, remains the most widely used method Tria et al., 2015.

DOI: 10.1107/5205225251500202X
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EOM - Generating a pool of
structures with RANCH

. Pool generation requires:
. Realistic and adequate sampling of conformational space
. Produce feasible models (e.g. avoid steric clashes)
. Incorporate high resolution information if available
. Without a good starting pool, EOM results will not be valid
. Uses an algorithm based on bond vs. dihedral angle distribution represented by Ca-
Ca Ramachandran plot
. Allows generation of models resembling chemically denatured or natively unfolded proteins
. Can incorporate high resolution information for multiple domains, with either fixed or

free positions

. Oligomers can be generated via symmetry operations
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EOM - Generating a pool of
structures with RANCH

Generates flexible structures from a single sequence

. No multi-chain proteins unless generatable through symmetry operators

If protein consists of known folded domains, can input one or more high resolution structures (.pdb)

Input structures are kept fixed, any amino acids not in the high resolution structures are allowed to move

. So delete any flexible loops/linkers from input structures if they have been modeled in

Input high resolution structures and input sequences must match exactly, amino acid by amino acid

. If there are gaps in your input .pdb file (e.g. missing flexible loop) you must split the structure into multiple .pdb
files around those gaps

. Sequence should also exactly match the sample, including tags and post-translational modifications

Can constrain symmetry, add known distance constraints/contacts

Can pick between different structure types for pool generation:

. Random-coil (default) - CA dihedral angle distribution consistent with chemically denatured proteins
. Native-like (recommended) - CA angle distribution consistent with disordered proteins
. Compact-chain — CA angle distribution consistent with disordered proteins, forces more compact linkers

Default is to generate 10,000 models, I prefer 50,000

. Do a test run first with ~100 models to make sure settings are correct. Save the generated models and open a few
in PyMOL or similar to see if reasonable conformations are being generated



EOM - Selecting a sub-
ensemble with GAJOE

A genetic algorithm is employed to select a sub-ensemble

1. Select 50 (default) sub-ensembles of structures
. Number of structures in an ensemble can be dynamically selected by program. Usually 5-20.
2. Generate 100 new sub-ensembles by:
1. Replacing 20% of structures in each sub-ensemble with structures from pool or other sub-
ensemble
2. Exchanging at least 2 structures between two randomly chosen sub-ensembles
3. Calculate fit for each of the 150 sub-ensembles against data
4, Select the 50 best fit sub-ensembles
5. Repeat the steps 2-4 1000 (default) times and take the final best fitting sub-ensemble

The genetic algorithm is run multiple times to generate a final sub-ensemble:

. Repeat the entire sub-ensemble selection process, steps 1-5, 100 (default) times

. Combine all the best sub-ensembles from all 100 runs into a single final sub-ensemble

. Calculate the scattering profile, Ry, Dmax, Volume, and average Ca-Ca distance distributions
for trlmist_final sub-ensemble. This represents the conformational space accessed by the protein
in solution

The genetic algorithm also outputs the structures in the single best fit sub-ensemble

. One the small ~5-20 member sub-ensembles output from a single refinement of the genetic
algorithm, steps 1-5

. Does not represent every possible state in solution, just a few representative conformations.
Do not over interpret these structures!



EOM - Selecting a sub-
ensemble with GAJOE

GAJOE can use a pool of structures generated by RANCH (typical) or by another
program

Multiple pools of structures can be used

. E.g. combining monomer and dimer pools
. Generally not recommended

Make sure to specify a sufficient number of spherical harmonics for calculating the
scattering profile of each structure

. 15 (default) fine for compact structures. Large particles, like IDPs, should use more
. Can test by ﬁenerat_ing a few structures, calculating their profiles with CRYSOL with different
numbers of harmonics and seeing if the profile changes

I typically run GAJOE 10 independent times, compare the results to make sure the
algorithm has sufficiently converged

EOM can be run as a single command (eom), or RANCH and GAJOE can be run
separately.

. GAIJOE can be re-run on the same pool without rerunning RANCH



EOM - Results

. Main EOM output is the Ry, Dnax, and Volume distribution of the selected
ensemble

. Comparison to the distributions from the full pool of conformational space
allows you to make statements about degree of flexibility of the protein
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Comparison of selected ensemble vs. pool values shows that CA IX’s PG
domain (an IDR) adopts primarily compact conformations close to the
folded catalytic domain. Sample ensemble structures shown on the right.

Koruza et al. 2020, DOI: 10.3390/ijms21155277



EOM - Results

EOM also provides some advanced metrics of flexibility

Rrex is @ quantification of the flexibility of a pool (either total or
selected ensemble)

. Allows quantification between flexible and rigid systems

Ry is the ratio of the standard deviation of the selected ensemble and
pool

. Close to 1 when selected ensemble describes a fully flexible system
and reproduces the conformational space of the pool

. If the Rrex Of the selected ensemble is smaller than that of the pool,
we expect R < 1

. If the Rrex Of the selected ensemble is larger than that of the pool,
we expect Rg > 1

. If the Rrex Of the selected ensemble is significantly smaller than that
of the pool, and R; > 1, may be a problem with the EOM result

There is currently a bug in the EOM calculation of Ry, it is
significantly off (e.g. 4.5 vs. 1.1 for a recent EOM run I did). Until
ATSAS 3.0.3 is released R, should be recalculated directly from the
output EOM distributions!
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DOI: 10.1107/5205225251500202X



Ravala et al.,

EOM

Tesmer lab (Purdue) studies P-Rex1,
a possible therapeutic target for
cancer, neurological disorders,
inflammatory diseases, and type 2
diabetes

Studying C terminal fragments
DH/PH and DH/PH-DEP1 domain
constructs as DEP1 may be
autoinhibitory.

Significant flexibility in linker
between DH/PH and DEP1

SAXS combined with other structural
and biophysical techniques was able
to show that the DH/PH-DEP1
construct adopts significantly
compact shapes in solution, most
likely attributable to interaction
between DH/PH and DEP1

Based on this association, proposed
a mechanism for inhibition

2020. DOI: 10.1074/jbc.RA120.014534
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. Pollack lab (Cornell) studies nucleosome
dynamics

. Interested in DNA unwinding from the histone A
core, essential for transcription, replication,
and repair

. Carried out time resolved contrast matching

SAXS to study dynamics of unwinding

. Each measured timepoint contains a
continuous distribution of different unwinding
states, had to be fit with an ensemble

. Generated a pool of candidate structures
using custom methods, carried out ensemble
selection using GAJOE at each time point

. Additional SAXS data from equilibrium
conditions at different unwinding stages,
FRET data used to verify results

. Put together kinetic picture of DNA states
during unwinding

Chen and Tokuda et al., 2017. DOI: 10.1073/pnas.1611118114
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Summary

SAXS is a powerful tool for studying flexible systems in solution

. One of the few methods that can quantitatively characterize partially disordered
or completely disordered macromolecules

Use multiple indicators to determine whether a system is flexible

. Other effects, such as aggregation or extended overall shape can show same
effects on profile and parameters as flexibility

Use ensemble analysis to inform about overall set of conformations
sampled in solution by your system

. Ralrely if ever is it appropriate to discuss a single state of the flexible system in
solution

EOM in the ATSAS package is the most common tool, but many others
are available
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