

Combining Memprot & Dadimodo, programs for modeling the detergent belt in solubilized membrane protein complexes & re-orienting domains of multi-domain proteins

M. Baranowski, A. Thureau, O. Roudenko, Javier Pérez

Synchrotron SOLEIL

Full flux = 5.10¹² ph/s @ 12 keV Beam size (FWHM) = 400 (H) x 25-100 (V) μm²

• Structural Biology (macromolecular shapes / low resolution structure)

• Soft Condensed Matter (crystal growth, colloids, polymers, liquid crystals, hierarchical systems, ...)

In vacuum detector (from 500 to 6700 mm sample to detector distance)

HPLC - MALLS/QELS - SAXS - RI online

J. Pérez, Everything BioSAXS 6th Workshop, October 2020

- SAXS is good at monitoring conformation changes
- Membrane proteins undergo conformational changes

One conformation A

One conformation B

 How can we use SAXS to monitor membrane proteins conformation changes ?

How can we use SAXS with a membrane protein of known structure ?

Our starting model protein: Aquaporin-0

Crystalline lens (eye)

✓ Two types of known existing states
 ✓ 3D already obtained

Full AQP0, from cortex → Tetramer

Gonen et al., Nature 2004

Purification of Full AQP0

• From bovine eye to lens membrane

- From lens membrane to AQP0 in solution
- Detergent: Dodecyl-β-D-maltopyranoside (DDM)
- ✓ Obtained concentration : 4 mg/ml (2ml)

2 problems for SAXS:

- Mixture
- Detergent belt

• Mixture problem solved with the HPLC

J. Pérez, Everything BioSAXS 6th Workshop, October 2020

 $\phi =$

SEC elution : O.D. (280nm) + R.I.

SEC elution : O.D. (280nm) + R.I. + SAXS

A parametrized torus with two electronic densities

The torus volume is filled with beads. The SAXS curve is calculated with CRYSOL

Beads « atoms » and grid parameters chosen for Crysol input : $\rho_{tails} = 0.282 \text{ Å}$ $\rho_{heads} = 0.520 \text{ Å}$ Lipfert et al. (2007), Phys.Chem.B, 111, 12427–12438

Validating the beads modeling

Beads « atoms » and grid parameters chosen for Crysol input : $\rho_{in} = 0.282 e^{-}/Å^{3}$ $\rho_{out} = 0.520 e^{-}/Å^{3}$

Validating the beads modeling

Circular detergent corona

Pérez J. & Koutsioubas, A. (2015), Acta Cryst., D71, 86-93

minimum_chi ← infinite
for each a in the range [a_min,a_max], do
for each b in the range [b_min,b_max], do
for each t in the range [t_min,t_max], do
for each e in the range [e_min,e_max], do
for each phi in the range [phi_min,phi_max], do
generate corona_model(a,b,t,e,phi)
calculate chi (corona, protein pdb, experimental data) calling CRYSOL
if minimum_chi > chi, then
minimum_chi ← chi
return chi

Algorithm of the *Memprot* program. The program essentially creates PDB files with the models made of the full-atom protein structure and the parameterized coarse-grained detergent corona, and *CRYSOL* is called to calculate the SAXS curves. An overall sorting on the χ value is performed to keep the best model.

Memprot : a program to generate/optimize the corona geometrical model

model %

Pérez J. & Koutsioubas, A. (2015), Acta Cryst., D71, 86-93

Example of fitting improvement steps on MHST protein

Full Aqp-0 (2b6p)

Truncated Aqp-0 (2b6o)

Figure 7

Scattering curves corresponding to corona parameters a = 29.6 Å, b = 35.4 Å, t = 5.6 Å, e = 1.12, $e'_{heads} = 0.512$ e Å⁻³, $e'_{tails} = 0.270$ e Å⁻³) for the full (2b6p) and truncated (2b6o) structures of aquaporin-0. The respective χ values are 1.31 and 3.79. The curve corresponding to an artificial optimized corona using the truncated form of aquaporin-0 is also plotted. The associated χ value is 3.47, which is still much higher than that for the complex based on the actual 2b6p structure.

- Typical Memprot runs range from thousands to hundreds of thousands of trials – the speed of calculations and scalability is an important issue
- We have implemented MPI-based, datadriven parallelization in Memprot to benefit from HPC clusters (here SOLEIL HPC)
- 449 residue protein MHST (PDB id 4us3) was used as a test case (sample provided by collaborators and measured at SWING)
- To prevent saturation of the cluster's network, Memprot stores everything (experimental data, protein's PDB model, intermediate files) locally in the node's RAM, utilising /dev/shm partition

<pre>7053</pre>					
<pre>7054 Best model # 6272 7055 a = 28.000 7056 b = 28.300 7057 t = 5.000 7058 e = 1.200 7059 r = 0.000 7060 d = 1.000 7061 chi^2 = 1.952 7062 Total pseudo atoms = 7436 7063 Total hydrophobic pseudo atoms = 3564 7064 Total hydrophylic pseudo atoms = 3872 7065 Vexcl{fit}/Vexcl{calc} (alpha) = 1.045 7066 Final ratio of tails to heads (TOH) = 1.307 7067 Initial electron density of hydrophobic part = 0.270 7068 Calculated electron density of hydrophobic part = 0.245 7069 Initial electron density of hydrophobic part = 0.540</pre>					
7055 a = 28.000 7056 b = 28.300 7057 t = 5.000 7058 e = 1.200 7059 r = 0.000 7060 d = 1.000 7061 chi^2 = 1.952 7062 Total pseudo atoms = 7436 7063 Total hydrophobic pseudo atoms = 3564 7064 Total hydrophylic pseudo atoms = 3872 7065 Vexcl{fit}/Vexcl{calc} (alpha) = 1.045 7066 Final ratio of tails to heads (TOH) = 1.307 7067 Initial electron density of hydrophobic part = 0.270 7068 Calculated electron density of hydrophobic part = 0.245 7069 Initial electron density of hydrophilic part = 0.540					
7056 b = 28.300 7057 t = 5.000 7058 e = 1.200 7059 r = 0.000 7060 d = 1.000 7061 chi^2 = 1.952 7062 Total pseudo atoms = 7436 7063 Total hydrophobic pseudo atoms = 3564 7064 Total hydrophylic pseudo atoms = 3872 7065 Vexcl{fit}/Vexcl{calc} (alpha) = 1.045 7066 Final ratio of tails to heads (TOH) = 1.307 7067 Initial electron density of hydrophobic part = 0.270 7068 Calculated electron density of hydrophobic part = 0.245 7069 Initial electron density of hydrophilic part = 0.540					
<pre>7057 t = 5.000 7058 e = 1.200 7059 r = 0.000 7060 d = 1.000 7061 chi^2 = 1.952 7062 Total pseudo atoms = 7436 7063 Total hydrophobic pseudo atoms = 3564 7064 Total hydrophylic pseudo atoms = 3872 7065 Vexcl{fit}/Vexcl{calc} (alpha) = 1.045 7066 Final ratio of tails to heads (TOH) = 1.307 7067 Initial electron density of hydrophobic part = 0.270 7068 Calculated electron density of hydrophobic part = 0.245 7069 Initial electron density of hydrophobic part = 0.540</pre>					
<pre>7058 e = 1.200 7059 r = 0.000 7060 d = 1.000 7061 chi^2 = 1.952 7062 Total pseudo atoms = 7436 7063 Total hydrophobic pseudo atoms = 3564 7064 Total hydrophylic pseudo atoms = 3872 7065 Vexcl{fit}/Vexcl{calc} (alpha) = 1.045 7066 Final ratio of tails to heads (TOH) = 1.307 7067 Initial electron density of hydrophobic part = 0.270 7068 Calculated electron density of hydrophobic part = 0.245 7069 Initial electron density of hydrophilic part = 0.540</pre>					
<pre>7059 r = 0.000 7060 d = 1.000 7061 chi^2 = 1.952 7062 Total pseudo atoms = 7436 7063 Total hydrophobic pseudo atoms = 3564 7064 Total hydrophylic pseudo atoms = 3872 7065 Vexcl{fit}/Vexcl{calc} (alpha) = 1.045 7066 Final ratio of tails to heads (TOH) = 1.307 7067 Initial electron density of hydrophobic part = 0.270 7068 Calculated electron density of hydrophobic part = 0.245 7069 Initial electron density of hydrophilic part = 0.540</pre>					
<pre>7060 d = 1.000 7061 chi^2 = 1.952 7062 Total pseudo atoms = 7436 7063 Total hydrophobic pseudo atoms = 3564 7064 Total hydrophylic pseudo atoms = 3872 7065 Vexcl{fit}/Vexcl{calc} (alpha) = 1.045 7066 Final ratio of tails to heads (TOH) = 1.307 7067 Initial electron density of hydrophobic part = 0.270 7068 Calculated electron density of hydrophobic part = 0.245 7069 Initial electron density of hydrophilic part = 0.540</pre>					
<pre>7061 chi^2 = 1.952 7062 Total pseudo atoms = 7436 7063 Total hydrophobic pseudo atoms = 3564 7064 Total hydrophylic pseudo atoms = 3872 7065 Vexcl{fit}/Vexcl{calc} (alpha) = 1.045 7066 Final ratio of tails to heads (TOH) = 1.307 7067 Initial electron density of hydrophobic part = 0.270 7068 Calculated electron density of hydrophobic part = 0.245 7069 Initial electron density of hydrophilic part = 0.540</pre>					
Total pseudo atoms = 7436 Total hydrophobic pseudo atoms = 3564 Total hydrophylic pseudo atoms = 3872 Vexcl{fit}/Vexcl{calc} (alpha) = 1.045 Final ratio of tails to heads (TOH) = 1.307 Total electron density of hydrophobic part = 0.270 Calculated electron density of hydrophobic part = 0.245 Initial electron density of hydrophilic part = 0.540					
Total hydrophobic pseudo atoms = 3564 Total hydrophylic pseudo atoms = 3872 Vexcl{fit}/Vexcl{calc} (alpha) = 1.045 Final ratio of tails to heads (TOH) = 1.307 Tof7 Initial electron density of hydrophobic part = 0.270 Calculated electron density of hydrophobic part = 0.245 Initial electron density of hydrophilic part = 0.540					
7064 Total hydrophylic pseudo atoms = 3872 7065 Vexcl{fit}/Vexcl{calc} (alpha) = 1.045 7066 Final ratio of tails to heads (TOH) = 1.307 7067 Initial electron density of hydrophobic part = 0.270 7068 Calculated electron density of hydrophobic part = 0.245 7069 Initial electron density of hydrophilic part = 0.540					
7065 Vexcl{fit}/Vexcl{calc} (alpha) = 1.045 7066 Final ratio of tails to heads (TOH) = 1.307 7067 Initial electron density of hydrophobic part = 0.270 7068 Calculated electron density of hydrophobic part = 0.245 7069 Initial electron density of hydrophilic part = 0.540					
7066 Final ratio of tails to heads (TOH) = 1.307 7067 Initial electron density of hydrophobic part = 0.270 7068 Calculated electron density of hydrophobic part = 0.245 7069 Initial electron density of hydrophilic part = 0.540					
7067 Initial electron density of hydrophobic part = 0.270 7068 Calculated electron density of hydrophobic part = 0.245 7069 Initial electron density of hydrophilic part = 0.540					
7068 Calculated electron density of hydrophobic part = 0.245 7069 Initial electron density of hydrophilic part = 0.540					
7069 Initial electron density of hydrophilic part = 0.540					
7069 Initial electron density of hydrophilic part = 0.540					
7070 Calculated electron density of hydrophilic part = 0.508					
7071 Number of detergent hydrophobic tails calculated = 285					
7072 Number of detergent hydrophilic heads calculated = 218					
1073					
7074 No model found below cutoffs.					
1075					
/076					
7077 TIMINGS:					
7078 Memprot took 2174.44(100.0%) seconds to complete, out of which:					
1079 -Building models took 106.65(4.9%) seconds to complete, out of which:					
/080 -Adaptive Shape Algorithm took 0.00(0.0%) seconds to complete, and:					
7081 -Crysol calls took 1998.71(91.9%) seconds to complete.					
7082 seconds per trial : 0.3117					
7083 sec. per 1k trials : 311.7472					
7084 min per 1k trials : 4.9880					
7085 hours per 1k trials : 0.0000					
7086 trials per second : 3.2077					
/087 trials per hour : 11547.8167					
7088 trials per day : 277147.6004					
7088 trials per day : 277147.6004 7089					

- Initial (slow) version : Evrard et al. (2011), J. Appl. Cryst., 44:1264-1271.
- Current (faster) version : O. Roudenko , A. Thureau, J. Pérez
 - Parallel implementation of the genetic algorithm
 - 7300 Atoms → 7 hours on a 20 processor node (200 generations)
 - User-friendly input
 - Tools for completion of pdb input files (if needed)
 - User-defined topology : Pdb file + rigid bodies definitions
 - Web server since end 2018
 - Accessible to external users (after login in Soleil DB)
 - Five independent runs launched in parallel

https://dadimodo.synchrotron-soleil.fr

https://dadimodo.synchrotron-soleil.fr

https://dadimodo.synchrotron-soleil.fr

https://dadimodo.synchrotron-soleil.fr

https://dadimodo.synchrotron-soleil.fr

« My submissions » tab:

- Status of current submission and history of past jobs
- Results download (zip file)

	Dadimodo Refining Atomic MultiDomain Proteins against SAXS Data				
New submission My submissions					
Filter Show Deleted submissions	2				
				ltems per page: 10	$\langle \rangle$
Submission Number	Last Update	Last State	Message ClusterCalculation	State ClusterCalculation	Details
thureau_2018-05-23_15-55-59	2018-05-23 23:59	uploaded to ISEI cluster	Calculation done		<u> </u>
thureau_2018-05-23_08-58-26	2018-05-23 15:49	uploaded to ISEI cluster	Calculation done		<u> </u>
thureau_2018-05-23_08-53-23	2018-05-23 08:53	uploaded to ISEI cluster	INVALID INPUT: download results (Details column) and check input_errors.txt for more details		- ±
thureau_2018-05-09_09-52-27	2018-05-09 15:11	deleted	Calculation done		-
thureau_2018-04-11_12-47-38	2018-04-11 21:26	deleted	Calculation done		- 1
thureau_2018-04-11_12-39-01	2018-04-11 12:38	deleted	Calculation done		-
thureau_2018-04-11_12-30-34	2018-04-11 12:30	deleted	Calculation done		-
thureau_2018-04-09_10-54-18	2018-04-09 21:08	deleted	Calculation done		-
thureau_2018-04-09_08-12-06	2018-04-09 08:12	deleted	Calculation done		-
thureau_2018-04-09_08-04-09	2018-04-09 08:03	deleted	Calculation done		

Results

Results

Results

5 best final fits : $1.68 < \chi^2 < 1.76$

Mycobacterium tuberculosis DNA Gyrase

HasA-HAsR: Modeling strategy

Corona geometrically adapted to protein shape

Roadmap

Dadimodo

- Better stop criteria (different from number of generations)
- More friendly output for each run (plot figures,...)
- Summary file for all runs (classification of individual results)
- ADR constraints available on WebServer version (currently only available on local version)

Memprot

- Commissioning of other geometries (bicelles & nanodiscs)
- Commissioning of PepsiSAXS implementation (collab. S Grudinin)
- Web server for direct access by users (currently only staff can use the HPC)

Collaborations

- AQP-0
 - <u>Alice Berthaud</u>, Institut Curie
 - Stéphanie Mangenot, Institut Curie
 - <u>Alexandros Koutsioumpas</u>, Swing + Julich ForschungsZentrum
- MHST
 - Poul Nissen team, Aarhus University
 - <u>Maciej Baranowski</u>, Swing
- HasA-HasR
 - Nadia Izadi
 - <u>Alexandros Koutsioumpas</u>, Julich ForschungsZentrum
- DNA Gyrase
 - Śtéphanie Petrella, Unité de Microbiologie Structurale

BioStructy - iNEXT

- Memprot
 - Maciej Baranowski, Swing Post-Doc
 - Alexandros Koutsioumpas
- Dadimodo on the Web
 - Olga Roudenko, SOLEIL
 - Aurélien Thureau, Swing
 - Alejandro Diaz, SOLEIĽ
- Beamline SWING
- Maciej Baranowski
- Javier Pérez
- Thomas Bizien
- Youssef Liatimi
- Aurélien Thureau

