

Time Resolved SAXS

Jesse Hopkins, PhD IIT/CSRRI Deputy Director, BioCAT Sector 18, Advanced Photon Source

June 23, 2022

Time resolved SAXS

- Different methods for different time resolutions
 - XFEL pump probe
 - Minimum timescales < 100 fs
 - Direct laser excitation required
 - Synchrotron pump probe
 - Minimum timescales ~100 ps
 - Direct laser excitation or T jump
 - Fast mixing
 - Minimum timescales ~100 µs
 - At synchrotrons or XFELs
 - Other
 - Pressure jump, T jump, manual mixing, etc.
 - Minimum timescales determined by reaction initiation process, details of measurement
- Important to pick a method that matches your timescales
 - XFEL and pump probe are more costly in sample, often harder to get time to do
- Consider initiation method

Time resolved SAXS

S.V. Kathuria et al Biopolymers 2011, 95, 550-558.

Time resolved SAXS

- SAXS is a global, solution based technique
- Any changes you can study with equilibrium SAXS can also be studied with TR-SAXS
- Complementary to site-specific probes like FRET
- At BioCAT:
 - Stopped flow mixing ($\gtrsim 1$ ms)
 - Continuous flow mixing
 - Chaotic flow mixing (~80 µs to 75 ms)
 - Laminar flow mixing (~1 ms to 1.5 s)

Stopped flow mixing

- Overview:
 - Mix together two liquids
 - Typically protein solution, and a solution inducing a reaction
 - Immediately after mixing, solution enters sample cell
 - Close off sample cell
 - Watch reaction evolve with time in sample cell
- Equipment commercially available
 - Straightforward, long history
- Earliest time point ~1 ms, latest however long you're willing to wait
- Measuring same sample over and over again can create radiation damage
 - Use limited total exposure, multiple injections to measure full time range
- Time resolution only as good as the fastest exposure
 - Lowers signal to noise, multiple injections to build up signal

Stopped flow mixing

Stopped flow mixing

BioCAT

Figure 1. Time-resolved SAXS of *Azoarcus* ribozyme folding. (A) Schematic view of the stopped-flow mixer (SFM400). Syringes were loaded with unfolded RNA (1 mg/mL after mixing) in 20 mM Tris-HCl and folding buffer containing MgCl₂. The dead time (\sim 0.6 ms) was minimized by a high flow rate and short distance from the small-volume mixer to the observation point. (B) Kratky plots of real-time folding data in 1.5 mM MgCl₂. Curve at 5 s (green) were in 5 mM MgCl₂. For time-resolved measurements (\leq 200 ms), 15–20 identical 1 ms data sets were averaged. Scattering data up to 5 s were acquired for 50 ms and averaged over 4 shots. For unfolded RNA in 20 mM Tris-HCl (orange) and folded RNA in 5 mM MgCl₂ (black) at equilibrium, data were collected for 1.6 s (4 times).

Roh et al., <u>J Am Chem Soc.</u> 2010 Jul 28;132(29):10148-54

- Due to radiation damage concerns, sample consumption, we don't recommend this approach
 - Exceptions for long time points, certain types of experiments
- Has been used very successfully at several beamlines
 - BL4-2 at SSRL
 - ID07 at ESRF

BioCAT

Continuous flow mixing

- Overview
 - Fast mixing done in microfluidic mixers
 - Mix together two liquids
 - Typically protein solution, and a solution inducing a reaction
 - Immediately after mixing, solution enters long observation region
 - Continuously flow sample through mixer
 - Constantly refreshing mixed solution
 - Observe reaction at different points in the observation region after mixing for different time points
- Equipment generally not commercially available
 - Only 1 beamline routinely provides this approach (BioCAT)
 - Some groups bring their own equipment to beamlines
- Time ranges depend on mixers used
 - For SAXS, earliest time point ~100 μs
 - Latest time point ~10 s
 - May need to use multiple mixers to achieve desired time range
- Minimizes radiation damage due to continuous flow
- Measured time point no longer depends on exposure time, can optimize signal to noise with more exposure

BioCAT Continuous flow mixing

Continuous flow mixing

Small observation channel requires microfocused beam We use compound refractive lens FWHM=20µm Some use KB mirrors Focal Length = 1.88mFWHM=4µm Low Divergence High flux density ~1012 ph/s @ 12 keV

Continuous flow mixing

- Mixer observation region is not completely uniform to x-rays
- Different time points require scanning along the observation region
 - Parasitic scattering variations require pointby-point buffer subtraction

Scanning has to be perfectly synchronized with exposure and extremely precise for good buffer subtraction

- To minimize sample consumption, synchronization with start of mixing also required
- Lots of time and effort required to get this right

- Mixer design and development in collaboration with Matthews group at U. Mass (Osman Bilsel)
 - Ongoing project for ~10 years
 - Current designs achieve lowest time points, use least sample
- Design guided by CFD
- Fabricated in quartz to withstand pressures and intense microfocus x-ray beam (Translume)
- ~80 µs to 75 ms

IDE-N

IDE-N

IDE-C

IDE-0

- Refolding experiment using Cytochrome C
- Testing whether refolding collapse is continuous or barrier limited
- Combined SAXS and FRET to test both global and local dynamics during refolding
- Developed a model for barrierlimited collapse based on changes in Rg in both equilibrium unfolding and time resolved SAXS data

Microsecond Barrier-Limited Chain Collapse Observed by Time-Resolved FRET and SAXS. Kathuria et al., <u>JMB.</u> 2014 May 1;426(9):1980-94.

Kinetic model for cytochrome c folding.

BioCAT

Kratky plots of kinetic and equilibrium species. Shows intermediate state.

BioCA

(A-F) FRET provides evidence for compaction. Ribbon diagrams illustrating the location of the FRET pairs are shown together with the distance distributions. Red, unfolded state in 10 M urea; green, unfolded state in 1 M urea; black, folded state in 1 M urea.

- Studying refolding in NTL9
- Using FRET and SAXS show that there is an initial fast contraction, followed by slower folding
- FRET combined with MD shows initial contracted state has specific structural preferences
- SAXS shows that the overall dimensions are consistent with a random coil, due to ensemble averaged conformational fluctuations

Guinier analysis of SAXS data. (A)

BioCA

Continuous-flow data for the native state in 1 M urea. (*B*) the unfolded state in 1 M urea. (*C*) Equilibrium data for the unfolded state in 10 M urea. (*D*) Comparison of average radii of gyration across the folded and unfolded states. Error bars are those calculated from the Guinier fits.

Peran et al. PNAS, 2019 Jun 18;116(25):12301-12310.

Laminar flow mixing

- Mixer development with Arleth group (U. Copenhagen), based on design from Pollack group (Cornell)
- Simulated using CFD
- Fabricated in quartz (Translume)
- ~1 ms to 1.5 s

Park et al. Anal. Chem. 2006

 Studying mechanism of insulin capture and degradation in insulin degrading enzyme (IDE)

BioCA

- Important process for type two diabetes and Alzheimer's disease
- Used cryoEM and x-ray crystallography to solve high resolution structures of insulin bound (closed) and unbound (open) states
- Used equilibrium SAXS to determine which states were present in solution
- Used time resolved SAXS to determine that open-close transition is rate limiting for insulin degredation

Zhang et al. Elife 2018 Mar 29;7. pii: e33572.

BioCAT

Zhang et al. *Elife* 2018 Mar 29;7. pii: e33572. doi: 10.7554/eLife.33572.

Time resolved SAXS at BioCAT

- Chaotic flow mixing
 - Provides fastest timescales (~80 µs to 75 ms)
 - Uniform mixing
 - Larger sample consumption (~10-100 mg per time series)
- Laminar flow mixing
 - Slower timescales (~1 ms to 1.5 s)
 - Non-uniform mixing (concentration of protein and reactant varies with time)
 - Low sample consumption (~1-10 mg per time series)

BioCAT

Doing TR-SAXS at BioCAT

- Talk to beamline scientists before arriving to plan experiments
 - Jesse Hopkins: jhopkins1@iit.edu
 - Max Watkins: mwatkins2@iit.edu
- TR-SAXS users first must do equilibrium SAXS measurements at BioCAT
 - Check sample quality (must be good enough for batch mode!)
 - Determine end points
 - Is expected change happening, visible with SAXS?
- Ideally other preliminary experiments to determine relevant timescales
 - Binding/off rates
 - FRET
 - Time resolved CD
 - Etc . . .
- Plan for at least 10 mg (laminar flow) or 100 mg (chaotic flow) of sample for first experiment
 - Less maybe possible depending on size of macromolecule, and time range of interest

Summary

- TR-SAXS (or WAXS) possible on timescales from <100 fs to days
- Pick appropriate initiation technique for timescale, desired reaction
- Most common (at synchrotrons) is mixing reactions
 - Stopped flow
 - Continuous flow
- BioCAT provides time ranges from ~80 µs to 1.5 s via continuous flow mixing, > 1 ms via stopped flow mixing